
Tutorial
In this tutorial we will demonstrate how to use . Note, that this guide is actual for version 21.Aprof

Getting Started
Running Aprof
Understanding Statistics
Examples

Fibonacci Numbers

Getting Started

First of all, extract from downloaded zip file with binaries. This JAR is the file you will be using.aprof.jar Aprof

Note, that you should not rename the file, otherwise it will not work.aprof.jar

Running Aprof

Aprof comes with integrated help explaining all supported options and their default values. Execute the following line from the console to read it:

java -jar aprof.jar

You will see that in order to profile your Java application with you should start JVM with option. For example, to profile well-Aprof -javaagent:aprof.jar
known demo you need to start it this way:SwingSet2

java -javaagent:aprof.jar -jar SwingSet2.jar

That's it! While you are using the demo, collects its memory allocation statistics and flushes it to file every minute.Aprof aprof.txt

Understanding Statistics

In order to understand file you should be aware of the following specifics of .aprof.txt Aprof

Imagine we are interested in allocations of . will collect all locations where these allocations take place. Naturally, some of them occur in char[] Aprof
constructor of object. However, it is not enough to know that, for instance, 3 with total size of 120 bytes were allocated at location String char[] java.lang.

. We are also interested in locations from which we called constructor of class . In order to collect such additional information without String.<init> String
taking stack-traces the following method is used.

In configuration some constructors/methods are marked as . What exactly does that mean? When we mark the method as , we tell Aprof tracked tracked Apr
 that we are interested in occurrences of the method on stack-trace taken at the moment of memory allocation. The trick we use is the fact that of

knowledge of the outermost tracked method and location from which it was called is enough to pinpoint the problem. Hence, for each memory allocation
the following data is collected by :Aprof

type of allocated object;
location where the allocation took place;
the outermost tracked method (if any) on stack-trace of the allocation;
location where the tracked method was called from.

These data is organized in a tree structure with types of objects being tree roots and reverse "stack-traces" of allocation context that can be at most 3
items deep as show in the above list. Items in the tree are ordered by the allocated size with most heavily allocated data types and most heavily used
allocation context going first. Here is the example of how it might look like in the actual output:

char[]: 488,329,896 (63%) bytes in 1,602,894 (25%) objects (avg size 305 bytes)
 java.lang.AbstractStringBuilder.expandCapacity: 335,290,736 (68%) bytes in 170,262 (10%) objects (avg
size 1,969 bytes)
 java.lang.reflect.Constructor.newInstance: 310,510,624 (92%) bytes in 56,810 (33%) objects (avg
size 5,466 bytes)
 SwingSet2.loadDemo: 310,508,240 (99%) bytes in 56,768 (99%) objects (avg size 5,470
bytes)
 java.awt.AWTKeyStroke.getCachedStroke: 1,456 (0%) bytes in 26 (0%) objects (avg size 56
bytes)
 sun.swing.SwingLazyValue.createValue: 928 (0%) bytes in 16 (0%) objects (avg size 58
bytes)
 java.lang.StringBuilder.append: 20,999,752 (6%) bytes in 35,880 (21%) objects (avg size 585
bytes)
 DemoModule.loadSourceCode: 19,179,264 (91%) bytes in 1,412 (3%) objects (avg size
13,583 bytes)
 com.devexperts.aprof.transformer.Context.getLocation: 662,968 (3%) bytes in 11,364
(31%) objects (avg size 58 bytes)
 com.devexperts.aprof.transformer.MethodTransformer.visitAllocateArray: 355,408 (1%)
bytes in 6,336 (17%) objects (avg size 56 bytes)
 com.devexperts.aprof.transformer.AbstractMethodVisitor.visitTypeInsn: 214,640 (1%)
bytes in 4,944 (13%) objects (avg size 43 bytes)
...

As you can see, also profiles itself.AProf

Examples

Aforementioned SwingSet2 demo is a complex application, hence its profiling results are not suitable for this tutorial. We will be using a series of
specifically designed samples. Some of them make no sense, some are written in non-optimal way, some might even contain bugs. Most likely you will
never see them in real applications. However, they help us demonstrate key features of .Aprof

Fibonacci Numbers

Let's take a look at the following program.

public class FibonacciNumbers {
 private static Integer fib(int n) {
 if (n < 2)
 return 1;
 return fib(n - 1) + fib(n - 2);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.printf("fib(%d)=%d\n", n, fib(n));
 }
}

It calculates Fibonacci number and prints it to . However, the method returns instead of which leads to a lot of garbage generated by nth stdout Integer int
the program. In large applications it is usually hard to find all such ineffective pieces of code.

Let's run this program under .Aprof

java -javaagent:aprof.jar com.devexperts.sample.FibonacciNumbers 40

And look at generated file aprof.txt.

TOTAL allocation dump for 29,423 ms (0h00m29s)
Allocated 66,155,144 bytes in 2,870,108 objects in 1,108 locations of 230 classes

java.lang.Integer: 34,953,568 (52%) bytes in 2,184,598 (76%) objects (avg size 16 bytes)
 java.lang.Integer.valueOf: 34,931,824 (99%) bytes in 2,183,239 (99%) objects
 FibonacciNumbers.fib: 34,852,928 (99%) bytes in 2,178,308 (99%) objects
...

We see that 52% of all memory allocations were made for objects. And almost all of them were done in method of class .Integer fib FibonacciNumbers

	Tutorial

