
About Aprof
Aprof is a Java memory allocation profiler with very low performance impact on the profiled application that can be used (and is used) on highly-loaded 
server-side applications in production environment. It acts as an agent which transforms class bytecode by inserting counter increments wherever memory 
allocation is done and tracks a precise size of allocated objects in bytes. It also keeps limited information about allocation context to aid in finding the 
memory allocation bottlenecks. 

GitHub Repository https://github.com/Devexperts/aprof

Public Maven repo https://bintray.com/devexperts/Maven/aprof (check agent/<version>/agent-<version>-bin.zip for distribution)

License GPLv3

Contact

Using aprof

Download the latest version of aprof distribution, unzip, copy " " to your application's directory and run the application with an additional JVM aprof.jar
argument:

java -javaagent:aprof.jar <your-application-options>

Run it and watch for " " file that will be updated every minute with memory allocation details reports for your application for the last minute (with aprof.txt
totals in the separate section at the end) in a human-readable form. There will be somewhat slower start-up time due to transformation and a lot of extra 
memory allocations by aprof itself, so wait a couple of minutes until your application and aprof warm up (aprof allocates all the memory it needs to operate 
during start-up and warm-up), start your application's workload, wait some more time until your application warms up under load, and use reports in "aprof.

" to find memory allocation bottlenecks in your application under load.txt

To get help on configuration parameters, run 

java -jar aprof.jar

Do not rename agent file " ", because it is configured by its name in manifest and will not work when renamed. aprof.jar

Features overview

Fast (can be used and )is designed to be used in production  
Provides detailed information (can be used to identify problematic pieces of code)
Configurable level of detail (as a compromise between speed and level of detail)
Open Source (see, learn, improve)

Known issues

In the current version (build 31):

Does not work on JVM 1.8.0_20 and on JVM 1.7.0_65 (VerifyError on transformed classes) due to a bug in JVM: http://bugs.java.com/view_bug.
do?bug_id=8051012 

. For Java 1.7.0 use 1.6.0_60 or turn off verifier with "-noverify" option.For Java 8, use 1.8.0_25 or later
Does not work on some releases of 1.6 (1.6.0_21 crashes with FATAL ERROR), but otherwise works in Java 5 to Java 8.
Does not fully analyze inheritance hierarchy when tracking configured method invocations. It does not intercept locations of invocations of tracked 
methods that are performed via a subtype that inherits the tracked method, It does misleadingly report invocation locations of a non-tracked 
method that happen to go via super-type that declares a tracked method for some other implementation of this type where this method is tracked. 
Reports memory allocations that are performed in Java 8 during lambda capture of variables from the scope as belonging to a location in some 
internal "xxx$Lambda$xxx" class, not in the actual source code method that creates this lambda.
Does not include Java 8 run-time library method (collections, streams, etc) in the default list of tracked methods.

Origin and Goals

Java VM has an option  printing how many instances of classes were allocated during the lifetime of the application and how much memory they -Xaprof
occupied in total and per instance. The option has no performance impact due to the fact that counting takes place during garbage collection. The only 
drawbacks are occasional overflows of counters and the absence of any information on locations where the object allocations take place.

https://github.com/Devexperts/aprof
https://bintray.com/devexperts/Maven/aprof
https://www.gnu.org/licenses/gpl-3.0.en.html
http://bugs.java.com/view_bug.do?bug_id=8051012
http://bugs.java.com/view_bug.do?bug_id=8051012
http://bugs.java.com/view_bug.do?bug_id=8051012
http://bugs.java.com/view_bug.do?bug_id=8051012


Aprof aims to overcome drawbacks of Java VM option  by:-Xaprof

collecting information on locations where the object allocations take place. 
providing accurate profiling results.
having a very low performance impact (to be safely used in production environments).

When to use Aprof

Aprof should be used when the application spends a lot of time in garbage collection. Due to the specifics of Java VM, objects are allocated so fast that 
CPU profilers are unable to pinpoint the allocation hotspot. The only way is to use memory allocation profilers.

There are many good memory allocation profilers. Unfortunately, in order to find locations where object allocations take place, they do the following:

on object allocation, a stack-trace is taken. This takes significant time and generates some garbage.
in order to lessen performance impact of taking stack-traces, sampling is used (i.e. not every object allocation is recorded). This leads to 
inaccurate profiling results.

As a result, memory allocation profilers leave us with both inaccurate profiling results and an impact on the profiled application.

Aprof gets accurate profiling results and finds locations of object allocations at the same time being garbage-free and having a very low performance 
impact.

How it works

See presentation on Joker Conference 2014: http://www.slideshare.net/elizarov/aprof-jocker-2014

http://www.slideshare.net/elizarov/aprof-jocker-2014

	About Aprof

