About di-check

DI-Check is a tool for finding potential deadlocks in Java programs via dynamic analysis approach.
GitHub Repository | https:/github.com/Devexperts/dicheck
Public Maven repo = https://bintray.com/devexperts/Maven/dl-check
License GPLv3

Contact dxlab@devexperts.com

DI-Check

DI-Check is a dynamic tool for finding potential deadlocks in multithreaded programs. It constructs the lock-order graph (similar to wait-for graph, but all
added edges not being removed, so it reflect lock acquisitions history) and finds cycles in it. DI-Check uses various tecniques to get it fast and scalable and
to avoid superfluous signals about potential deadlocks.

See this paper for details: DI-Check: Dynamic Potential Deadlock Detection Tool for Java Programs

How To

DI-Check is implemented as Java agent, so you should add - j avaagent : dl check. j ar option to analyze your application. To download the agent
artifact use our Bintray repository: https://bintray.com/devexperts/Maven/dl-check.

Command Line

Here is an example of command line usage:

java -javaagent:dlcheck.jar -jar your_app.jar
Do not rename dl check. j ar!

Maven

Use the following code in your pom xm to use DI-Check for tests.

https://github.com/Devexperts/dlcheck
https://bintray.com/devexperts/Maven/dl-check
https://www.gnu.org/licenses/gpl-3.0.en.html
https://link.springer.com/chapter/10.1007/978-3-319-71734-0_6
https://bintray.com/devexperts/Maven/dl-check

<!-- maven- dependency-plugin is used to
copy "dl check" agent into target directory -->
<pl ugi n>
<artifactld>maven-dependency-pl ugi n</artifactld>
<executions>
<execution>
<i d>copy- sanpl e- agent </ i d>
<phase>process-test-cl asses</ phase>
<goal s>
<goal >copy</ goal >
</ goal s>
<configuration>
<artifactltems>
<artifactltenr
<gr oupl d>com devexperts. dl check</ groupl d>
<artifactld>agent</artifactld>
<ver si on>${ dl check. ver si on} </ ver si on>
<out put Di rect ory>${proj ect. bui | d. di rectory} </ out putDi rectory>
<!-- Do not use another nanme! -->
<dest Fi | eNanme>dl check. j ar </ dest Fi | eNanme>
<lartifactltenr
</artifactltems>
</ confi guration>
</ executi on>
</ executions>

</ pl ugi n>
<l-- Configure naven-surefire-plugin -->
<pl ugi n>

<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<configuration>
<argLi ne>-j avaagent: ${ proj ect. bui | d. di rect ory}/dl check. j ar
- Ddl check. cache. di r =${ dl check. wor kdi r}/ cache
<l-- Optional, fails at the point of potential deadlock is detected -->
- Ddl check. fail =true
- Ddl check. out put =${ dl check. wor kdi r}/ pot enti al _deadl ocks
</ ar gLi ne>
</ configuration>
</ pl ugi n>

<dependency>
<groupl d>com devexperts. dl check</ gr oupl d>
<artifactld>agent</artifactld>
<ver si on>${dl check. ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

Options
DI-Check can be configured via several system parameters (-Dparam.name=value).

dicheck.output defines path of file to be used for reporting. By default prints a report to the standard output.

dicheck.fail defines should DI-Check throws an exception at the point of potential deadlock detection. Disabled by default.

dicheck.log.level defines internal logging level. Possible values: DEBUG, INFO (default value), WARN, ERROR.

dicheck.log.file defines path of file to be used for logging. By default logs are printed to the standard output.

dicheck.cache.dir [experimental] defines directory to be used for transformed classes caching. This feature is unstable, use it on your own risk.
dicheck.include defines the transformation scope using globs. For example, setting the value to package. t o. t ransform *, anot her.
package. t o. transf orm * informs DI-Check to transform classes from these packages only. By default all classes are included.

® dicheck.exclude defines the classes which should be excluded from transformation. The syntax is similar to dicheck.include option.

Output

Here is an example of DI-Check output. For each potential deadlock the associated cycle, currently acquired locks and stack trace are available.

111 Potential deadlock !!!

Cycle in lock graph:
Lock Obj ect @ce69770 was acquired at:
com devexperts. dl check. t ests. base. Synchroni zedSt at enent Test . t est (Synchr oni zedSt at ement Test . j ava: 37)
com devexperts. dl check. t ests. base. Synchroni zedSt at enent Test . t est (Synchr oni zedSt at ement Test . j ava: 40)
Lock Obj ect @ce026d3 was acquired at:
com devexperts. dl check. t ests. base. Synchroni zedSt at enent Test . t est (Synchr oni zedSt at enent Test . j ava: 36)
com devexperts. dl check. t ests. base. Synchroni zedSt at enent Test . t est (Synchr oni zedSt at ement Test . j ava: 41)
Edge ' Obj ect @ce026d3 -> Obj ect @ce69770' was added at:
com devexperts. dl check. t ests. base. Synchroni zedSt at enent Test . t est (Synchr oni zedSt at enent Test . j ava: 41)
sun.refl ect. Nati veMet hodAccessor | npl . i nvokeO(Native Met hod)
sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . j ava: 62)
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | npl . j ava: 43)
java.l ang.refl ect. Met hod. i nvoke(Met hod. j ava: 498)
org.junit.runners. nodel . Franewor kMet hod$1. runRef | ectiveCal | (Framewor kMet hod. j ava: 50)
org.junit.internal.runners. nodel . Refl ectiveCallabl e.run(ReflectiveCallable.java: 12)

Current |ock stack:

Lock Obj ect @ce69770 was acquired at:
com devexperts. dl check. t ests. base. Synchroni zedSt at enent Test . t est (Synchr oni zedSt at ement Test . j ava: 37)
com devexperts. dl check. t ests. base. Synchroni zedSt at enent Test . t est (Synchr oni zedSt at enent Test . j ava: 40)

Contacts

If you need help, you have a question, or you need further details on how to use DI-Check, you can refer to the following resources:

® dxLab research group at Devexperts
® GitHub issues

You can use the following e-mail to contact us directly:

https://code.devexperts.com/
https://github.com/Devexperts/dlcheck/issues

	About dl-check

