
About time-test
time-test is a lightweight framework for testing time-based functionality.

GitHub Repository https://github.com/Devexperts/time-test

Public Maven repo https://bintray.com/devexperts/Maven/time-test

License GPLv3

Contact

 README.md (source from)time-test

time-test

time-test is a framework for testing time-based functionality.

Sometimes you have code with similar logic: "wait for 30 seconds and then do something if no changes have been detected".

If you want to test such logic you can write something like this:

Thread.sleep(30_000 + 200);
check();

However, such tests are undesirable to be in the project. Also what if you want to test logic which should be executed once per month? Or what if this
"something doing" hasn't done before the check starts?

time-test provides an easy way to test such logic. For example, the code above can be written more clear:

TestTimeProvider.increaseTime(30_000);
TestTimeProvider.waitUntilThreadsAreFrozen(200 /*ms*/);
check();

And this test doesn't do superfluous work.

time-test instruments byte-code and change time-based methods invocations (such as System.currentTimeMillis, Object.wait, Unsafe.park) to our own
implementation.

TimeProvider
This interface provides an implementation of time-based methods. The default implementation forwards all calls to standard system methods.

Use to start using it. Don't forget to reset TimeProvider to default. Use for this.XXXTimeProvider.start() XXXTimeProvider.reset()

DummyTimeProvider
DummyTimeProvider throws on all method calls. It should be used for testing functionality which does not depend UnsupportedOperationException

on time.

TestTimeProvider
TestTimeProvider provides full access on time. Use and to TestTimeProvider.setTime(millis) TestTimeProvider.inscreaseTime(millis)

change current time. Use to wait until all threads complete their work.TestTimeProvider.waitUntilThreadsAreFrozen

https://github.com/Devexperts/time-test
https://bintray.com/devexperts/Maven/time-test
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com:443/devexperts/time-test/blob/master/README.md

In order to work properly defines if it is executed in the testing code or not on every time-based operation invocation (including TestTimeProvider Object.

 and similars). For this purpose an entry point to your code have to be specified (see property). After that, if your code notity() timetest.testingCode
starts a thread it will be marked as ours too (traces Thread.start() invocations for this purpose). However, there are some problems if you use time-test
shared scheduler like . In order to work with it expand property.ForkJoinPool timetest.testingCode

Configuration
You can pass your own configuration in properties file or set these properties as system parameters (). timetest.properties -Dparam.name=value
The file should be in the application classpath.timetest.properties

timetest.testingCode - defines the entry points of the testing code in glob format. Several globs can be separated by comma. Default value: com.
 (all classes with suffix).devexperts.*Test Test

timetest.nonTestingCode - defines the scope of code which have to be processed like non-testing onecode in glob format. It can be helpful to print
real timestamps in logging instead of virtual ones. Default value: .com.devexperts.logging.*
timetest.log.level defines internal logging level. Possible values: , (default value), , .DEBUG INFO WARN ERROR
timetest.log.file defines path of file to be used for logging. By default logs are printed to the standard output.
timetest.cache.dir [experimental] defines directory to be used for transformed classes caching. This feature is unstable, use it on your own risk.
timetest.include defines the transformation scope using globs. For example, setting the value to package.to.transform.*,another.

 informs to transform classes from these packages only. By default all classes are included.package.to.transform.* time-test
timetest.exclude defines the classes which should be excluded from transformation. The syntax is similar to option. Default value: timetest.include
org.apache.maven.*,org.junit.*,com.devexperts.test.*

Maven
Time-test is implemented as java agent and you should copy it to build directory and configure to use it for tests.maven-surefire-plugin

...
<plugins>
 <!-- maven-dependency-plugin is used to copy "timetest" agent into target directory -->
 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>copy-timetest-agent</id>
 <phase>process-test-classes</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>com.devexperts.timetest</groupId>
 <artifactId>agent</artifactId>
 <version>${project.version}</version>
 <outputDirectory>${project.build.directory}</outputDirectory>
 <destFileName>timetest.jar</destFileName>
 </artifactItem>
 </artifactItems>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <!-- Configure maven-surefire-plugin to use "timetest" agent -->
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <argLine>-javaagent:${project.build.directory}/timetest.jar</argLine>
 </configuration>
 </plugin>
</plugins>
...

Usage example

@Before
public void setUp() {
 TestTimeProvider.start();
}

@After
public void tearDown() {
 TestTimeProvider.reset();
}

@Test(timeout = 100)
public void testSleepWithTestTimeProvider() {
 Thread t = new Thread(() -> {
 // Do smth
 int sum = 0;
 for (int i = 0; i < 100_000; i++)
 sum += i;
 // Sleep
 Thread.sleep(10_000);
 });
 t.start();
 TestTimeProvider.waitUntilThreadsAreFrozen();
 TestTimeProvider.increaseTime(10_000);
 t.join();
}

Contacts
If you need help, you have a question, or you need further details on how to use , you can refer to the following resources:time-test

dxLab research group at Devexperts
GitHub issues

You can use the following e-mail to contact us directly:

https://code.devexperts.com/
https://github.com/Devexperts/lin-check/issues

	About time-test

