
About lin-check
lin-check is a tool for Java that checks linearizability on concurrent data structures.

GitHub Repository https://github.com/Devexperts/lin-check

Public Maven repo -

License MPL 2.0 (since Lincheck v3.0)

Contact

 README.md (source from)lin-check

Lin-Check
NOTE: Check for the most recent version with extended Kotlin support.https://github.com/Kotlin/kotlinx-lincheck

LICENSE CHANGE: Starting from version the product is distributed under the license.3.0 MPL 2.0

Lin-Check is a framework for testing concurrent data structures for correctness. In order to use the framework, operations to be executed concurrently
should be specified with the necessary information for an execution scenario generation. With the help of this specification, generates different Lin-Check
scenarios, executes them in concurrent environment several times and then checks that the execution results are correct (usually, linearizable, but
different relaxed contracts can be used as well).

Table of contents
Test structure

Initial state
Operations and groups

Calling at most once
Exception as a result
Operation groups

Parameter generators
Binding parameter and generator names

Run test
Execution strategies

Stress strategy
Correctness contracts

Linearizability
Serializability
Quiescent consistency
Quantitative relaxation

Configuration via options
Sample
Contacts

Test structure
The first thing we need to do is to define operations to be executed concurrently. They are specified as methods with an annotation public @Operation

in the test class. If an operation has parameters, generators for them have to be specified. The second step is to set an initial state in the empty
constructor. After the operations and the initial state are specified, uses them for test scenarios generations and runs them.Lin-Check

Initial state
In order to specify the initial state, the empty argument constructor is used. It is guaranteed that before every test invocation a new test class instance is
created.

Operations and groups

https://github.com/Devexperts/lin-check
https://www.mozilla.org/en-US/MPL/2.0/
https://github.com:443/devexperts/lin-check/blob/master/README.md
https://github.com/Kotlin/kotlinx-lincheck

As described above, each operation is specified via annotation.@Operation

@Operation
public Integer poll() { return q.poll(); }

Calling at most once

If an operation should be called at most once during the test execution, you can set option and this operation appears @Operation(runOnce = true)

at most one time in the generated scenario.

Exception as a result

If an operation can throw an exception and this is a normal result (e.g. method in implementation throws if remove Queue NoSuchElementException

the queue is empty), it can be handled as a result if options are specified. See the example below @Operation(handleExceptionsAsResult = ...)

where is processed as a normal result.NoSuchElementException

@Operation(handleExceptionsAsResult = NoSuchElementException.class)
public int remove() { return queue.remove(); }

Operation groups

In order to support single producer/consumer patterns and similar ones, each operation could be included in an operation group. Then the operation group
could have some restrictions, such as non-parallel execution.

In order to specify an operation group, annotation should be added to the test class with the specified group name and its configuration:@OpGroupConfig

nonParallel - if set all operations from this group will be invoked from one thread.

Here is an example with single-producer multiple-consumer queue test:

@OpGroupConfig(name = "producer", nonParallel = true)
public class SPMCQueueTest {
 private SPMCQueue<Integer> q = new SPMCQueue<>();

 @Operation(group = "producer")
 public void offer(Integer x) { q.offer(x); }

 @Operation
 public Integer poll() { return q.poll(); }
}

A generator for parameter is omitted and the default is used. See paragraph for details.x Default generators

Parameter generators
If an operation has parameters then generators should be specified for each of them. There are several ways to specify a parameter generator: explicitly
on parameter via annotation, using named generator via annotation, or using the default @Param(gen = ..., conf = ...) @Param(name = ...)

generator implicitly.

For setting a generator explicitly, annotation with the specified class generator () and string configuration (@Param @Param(gen = ...) @Param(conf

) should be used. The provided generator class should be a implementation and can be implemented by user. From the = ...) ParameterGenerator

box supports random parameter generators for almost all primitives and strings. Note that only one generator class is used for both primitive Lin-Check
and its wrapper, but boxing/unboxing does not happen. See for details.com.devexperts.dxlab.lincheck.paramgen

It is also possible to use once configured generators for several parameters. This requires adding this annotation to the test class instead of the @Param

parameter specifying it's name (). Then it is possible to use this generator among all operations using annotation with the @Param(name = ...) @Param

provided name only. It is also possible to bind parameter and generator names, see for details.Binding parameter and generator names

If the parameter generator is not specified tries to use the default one, binding supported primitive types with the existent generators and using Lin-Check
the default configurations for them.

binding-parameter-and-generator-names

Binding parameter and generator names

Java 8 came with the feature () to store parameter names to class files. If test class is compiled this way then they are used as the name of the JEP 188
already specified parameter generators.

For example, the two following code blocks are equivalent.

@Operation
public Integer get(int key) { return map.get(key); }

@Operation
public Integer get(@Param(name = "key") int key) {
 return map.get(key);
}

Unfortunately, this feature is disabled in compiler by default. Use option to enable it. In you can use the following plugin javac -parameters Maven
configuration:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <compilerArgument>-parameters</compilerArgument>
 </configuration>
</plugin>

However, some IDEs (such as IntelliJ IDEA) do not understand build system configuration as well as possible and running a test
from these IDEs will not work. In order to solve this issue you can add option for compiler in your IDE -parameters javac
configuration.

Run test
In order to run a test, method should be executed with the provided test class as a parameter. Then looks at LinChecker.check(...) Lin-Check
execution strategies to be used, which can be provided using annotations or options (see for details), and runs a test with each of Configuration via options
provided strategies. If an error is found, an is thrown and the detailed error information is printed to the standard output. It is AssertionError

recommended to use or similar testing library to run method.JUnit LinChecker.check(...)

@StressCTest // stress execution strategy is used
public class MyConcurrentTest {
 <empty constructor and operations>

 @Test
 public void runTest() {
 LinChecker.check(MyConcurrentTest.class);
 }
}

It is possible to add several annotations with different execution strategies or configurations and all of them should be @..CTest

processed.

Execution strategies
The section above describes how to specify the operations and the initial state, whereas this section is about executing the test. Using the provided
operations generates several random scenarios and then executes them using the specified execution strategy. At this moment stress strategy Lin-Check
is implemented only, but some managed strategies will be added soon as well.

Stress strategy

http://openjdk.java.net/jeps/118

The first implemented in execution strategy is stress testing strategy. This strategy uses the same idea as tool - it executes the Lin-Check JCStress

generated scenario in parallel a lot of times in hope to hit on an interleaving which produces incorrect results. This strategy is pretty useful for finding bugs
related to low-level effects (like a forgotten volatile modifier), but, unfortunately, does not guarantee any coverage. It is also recommended to use not only
Intel processors with this strategy because its internal memory model is quite strong and cannot produce a lot of behaviors which are possible with ARM,
for example.

In order to use this strategy, just annotation should be added to the test class or should be used if the test uses options @StressCTest StressOptions

to run (see for details). Both of them are configured with the following options:Configuration via options

iterations - number of different scenarios to be executed;
invocationsPerIteration - number of invocations for each scenario;
threads - number of threads to be used in a concurrent execution;
actorsPerThread - number of operations to be executed in each thread;
actorsBefore - number of operations to be executed before the concurrent part, sets up a random initial state;
actorsAfter - number of operations to be executed after the concurrent part, helps to verify that a data structure is still correct;
verifier - verifier for an expected correctness contract (see for details).Correctness contracts

Correctness contracts
Once the generated scenario is executed using the specified strategy, it is needed to verify the operation results for correctness. By default Lin-Check
checks the result for linearizability, which is de-facto a standard type of correctness. However, there are also verifiers for some relaxed contracts, which
should be set via option.@..CTest(verifier = ..Verifier.class)

Linearizability
Linearizability is a de-facto standard correctness contract for thread-safe algorithms. It means that an execution is equivalent to some operations sequence
which produces the same results and does not avoid happens-before order. The is used by default to check for this LinearizabilityVerifier

correctness type.

The verifier lazily constructs a transition graph, where states are test instances and edges are operations. Then it tries to find a path which does not violate
the happens-before order and produces same results on operations. In order not to have state duplicates, it is better to implements and equals(..) hash

 methods.Code()

Serializability
Serializability is one of the base contracts, which ensures that an execution is equivalent to one that invokes operations in any serial order. The Serializa

 is used for this contract.bilityVerifier

Alike linearizability verification, it also constructs a transition graph and expects and methods overrides.equals(..) hashCode()

Quiescent consistency
Quiescent consistency is a stronger guarantee than serializability but still relaxed comparing to linearizability. It ensures that an execution is equivalent to
some operations sequence which produces the same results and does not reorder operation between quiescent points. Quiescent point is a cut where all
operations before the cut are happens-before all operations after it. In order to check for this consistency, use and QuiescentConsistencyVerifier

mark all quiescent consistent operations with annotation, all other operations are automatically linearizable.@QuiescentConsistent

Alike linearizability verification, it also constructs a transition graph and expects and methods overrides.equals(..) hashCode()

@StressCTest(verifier = QuiescentConsistencyVerifier.class)
public class QuiescentQueueTest {
 private QuiescentQueue<Integer> q = new QuiescentQueue<>();

 // Only this operation is quiescent consistent
 @QuiescentConsistent
 public Integer poll() {
 return q.poll();
 }

 @Operation
 public boolean offer(Integer val) {
 return q.offer(val);
 }

 @Test
 public void test() {
 LinChecker.check(QuiescentQueueTest.class);
 }

 // equals(..) and hashCode() here
}

Quantitative relaxation
One more trade-off contract is suggested by T. Henzinger et al., which relaxes a data structure semantics. Instead of allowing some reorderings, they
suggest to allow "illegal" by the data structure specification results, but with a penalty. This penalty is called a transition cost and then is used to count a
path cost, which should be less then a relaxation factor if an execution is correct.

Look at this paper for details: Henzinger, Thomas A., et al. "Quantitative relaxation of concurrent data structures." ACM SIGPLAN
Notices. Vol. 48. No. 1. ACM, 2013.

In order to describe the contract of a testing data structure, the transition costs, the path cost function and the relaxation factor should be specified.

At first, all relaxed operations should be annotated with . The current version of counts a path cost using all relaxed @QuantitativeRelaxed Lin-Check
operations, but grouping is going to be introduced later.

Then the special cost counter class have to be defined. This class represents a current data structure state and has the same methods as testing
operations, but with an additional parameter and another return type. If an operation is not relaxed this cost counter should check that the Result

operation result is correct and return the next state (which is a cost counter too) or in case the result is incorrect. Otherwise, if a corresponding null

operation is relaxed (annotated with), the method should return a list of all possible next states with their transition cost. For @QuantitativeRelaxed

this purpose, a special class should be used. This class contains the next state and the transition cost with the predicate CostWithNextCostCounter

value, which are defined in accordance with the original paper. Thus, should be returned by these methods and an List<CostWithNextCostCounter>

empty list should be returned in case no transitions are possible. In order to restrict the number of possible transitions, the relaxation factor should be used.
It is provided via a constructor, so uses the constructor for the first instance creation.Lin-Check (int relaxationFactor)

The last thing to do is to provide the relaxation factor, the cost counter class, and the path cost function to the verifier. For this purpose, the test class
should have an annotation, which is then used by . As for @QuantitativeRelaxationVerifierConf(...) QuantitativeRelaxationVerifier

the path cost function, , , and are implemented in class in accordance with MAX PHI_INTERVAL PHI_INTERVAL_RESTRICTED_MAX PathCostFunction

the past cost functions in the original paper.

Here is an example for k-stack with relaxed operation and normal one:pop() push

@StressCTest(verifier = QuantitativeRelaxationVerifier::class)
@QuantitativeRelaxationVerifierConf(
 factor = K,
 pathCostFunc = MAX,
 costCounter = KRelaxedPopStackTest.CostCounter::class
)
class KRelaxedPopStackTest {
 private val s = KRelaxedPopStack<Int>(K)

 @Operation
 fun push(x: Int) = s.push(x)

 @QuantitativeRelaxed
 @Operation
 fun pop(): Int? = s.pop()

 @Test
 fun test() = LinChecker.check(KRelaxedPopStackTest::class.java)

 // Should have '(k: Int)' constructor
 data class CostCounter @JvmOverloads constructor(
 private val k: Int,
 private val s: List<Int> = emptyList()
) {
 fun push(value: Int, result: Result): CostCounter {
 check(result.type == VOID)
 val sNew = ArrayList(s)
 sNew.add(0, value)
 return CostCounter(k, sNew)
 }

 fun pop(result: Result): List<CostWithNextCostCounter<CostCounter>> {
 if (result.value == null) {
 return if (s.isEmpty())
 listOf(CostWithNextCostCounter(this, 0))
 else emptyList()
 }
 return (0..(k - 1).coerceAtMost(s.size - 1))
 .filter { i -> s[i] == result.value }
 .map { i ->
 val sNew = ArrayList(s)
 sNew.removeAt(i)
 CostWithNextCostCounter(CostCounter(k, sNew), i)
 }
 }
 }
}

Configuration via options
Instead of using annotations for specifying the execution strategy and other parameters, it is possible to use @..CTest LinChecker.check(Class<?

 method and provide options for it. Every execution strategy has its own Options class (e.g., for stress strategy) which >, Options) StressOptions

should be used for it. See an example with stress strategy:

public class MyConcurrentTest {
 <empty constructor and operations>

 @Test
 public void runTest() {
 Options opts = new StressOptions()
 .iterations(10)
 .threads(3)
 .logLevel(LoggingLevel.INFO);
 LinChecker.check(StressOptionsTest.class, opts);
 }
}

Sample
Here is a test for a not thread-safe with its result. It uses the default configuration and tests and operations only:HashMap put get

Test class

@Param(name = "key", gen = IntGen.class, conf = "1:5")
@StressCTest
public class HashMapLinearizabilityTest {
 private HashMap<Integer, Integer> map = new HashMap<>();;

 @Operation
 public Integer put(@Param(name = "key") int key, int value) {
 return map.put(key, value);
 }

 @Operation
 public Integer get(@Param(name = "key") int key) {
 return map.get(key);
 }

 @Test
 public void test() {
 LinChecker.check(HashMapLinearizabilityTest.class);
 }

 // 'map' field is included in equals and hashCode
 @Override public boolean equals(Object o) { ... }
 @Override public int hashCode() { ... }
}

Test output

= Invalid execution results: =
Execution scenario (init part):
[get(4), get(9), get(5), get(8), get(3)]
Execution scenario (parallel part):
put(1, 4)	get(4)
get(3)	put(3, 6)
get(4)	put(6, 1)
put(6, 4)	get(8)
get(8)	put(3, 0)
Execution scenario (post part):
[get(3), get(6), get(4), put(9, -10), put(6, 10)]

Execution results (init part):
[null, null, null, null, null]
Execution results (parallel part):
null	null
null	null
null	null
1	null
null	null
Execution results (post part):
[0, 4, null, null, 4]

Contacts
If you need help, you have a question, or you need further details on how to use , you can refer to the following resources:Lin-Check

dxLab research group at Devexperts
GitHub issues

You can also use the following e-mail to contact us directly:

https://opensource.devexperts.com/
https://github.com/Devexperts/lin-check/issues

	About lin-check

