8th Central and Eastern European @ 2012
A

Software Engineering Conference - CEE-SECR!

in Russia - CEE-SECR 2012 Software Engineering
Conference in Russia

November 1 - 2, Moscow

Dynamic data race detection in

concurrent Java programs

Vitaly Trifanov, Dmitry Tsitelov

g Devexperts LLC

DEVEXPERTS

Agenda

What are data races and why they are dangerous

Automatic races detection
e approaches, pros & cons

Happens-before race detection algorithm
e Vector clocks

Our dynamic race detector
e implementation
e solved problems

-

Data Race Example

public class Account {
private int amount = 0;
public void deposit(int x) {amount += x;}
public int getAmount() {return amount;}

public class TestRace {
public static void main (String[] args) {
final Account a = new Account();
Thread t1 = depositAccountInNewThread(a, 5);
Thread t2 = depositAccountInNewThread(a, 6);
tl.join();
t2.join();
System.out.println(account.getAmount()); //may print 5, 6, 11.

Thread 1

Expected Execution

Memory i

e

\.

Thread 2

\

i+=6

Racy Execution
Thread 1 i
Memory - i==0 / \ .
Thread 2 \ 22 0 |

Data Races

» Data race occurs when many threads access the same
shared data concurrently; at least one writes

e Usually it’s a bug

Data Races Are Dangerous

Hard to detect if occurred

* no immediate effects

e program continues to work

e damage global data structures

Hard to find manually
e Not reproducible - depends on threads timing
e Dev & QA platforms are not so multicore

Automatic Race Detection

* 20+ years of research

» Static
e analyze program code offline
e data races prevention (extend type system, annotations)

* Dynamic: analyze real program executions
e On-the-fly
e Post-mortem

O
=
©
-+
)
N
>
N
| -
@)
-+
O
)
-+
O
O
9
&
©
C
=>
O

Static Approach

Pros

e Doesn’t require program execution

e Analyzes all code

e Doesn’ t depend on program input, environment, etc.

Cons
e Unsolvable in common case
e Has to reduce depth of analysis

A lot of existing tools for Java
e FindBugs, jChord, etc

Dynamic Approach

* Pros
e Complete information about program flow
e Lower level of false alarms

* Cons
e Very large overhead

* No existing stable dynamic detectors for Java

Static vs Dynamic: What To Do?

Use both approaches ©

Static (FindBugs/Sonar, jChord, ...)
e Eliminate provable synchronization inconsistencies
on the early stage

Dynamic

e Try existing tools, but they are unstable
IBM MSDK, Thread Sanitizer for Java

e That' s why we’ ve developed our own!

Data Race Detector Concept

Application uses libraries and frameworks via API
e At least JRE

APl is well documented

e “Class XXX is thread-safe”

e “Class YYY is not thread-safe”

o “XXX.get() is synchronized with preceding call of XXX.set()”

Describe behavior of APl and exclude library from analysis

Code Analysis Scope

Sync scope

(Race detection scop)

- Application: whole app code with JRE, libraries, etc.

- Sync scope: intercept synchronization operations

- Race detection scope: detect races

-

DRD: How It’ s Organized

Front View
Surface City Emperor's Tower
Blocks Command Sector (North)
guperlaser

. Reactor Core (internal)
Equatorial : izl e :
Trench ; = st —_— — lon Drives

(uncompleted)

Exposed Superstructure

Command Sector (South)

What Operations to Intercept?

Synchronization operations
e thread start/join/interrupt
e synchronized

e volatile read/write

e java.util.concurrent

Accesses to shared data
e fields
® objects

How It Works

Instrumented

DRD agent app classes
_ ——

Application
classes

-

S interceptor

=i

Race

detection
module

JLS: Publishing Data

T1 —{ X = 5; H monitor.release()

Publish changes

Memory—| X==9)—>

Receive changes

T2 —{ monitor.acquire() H X==5 F’

_ /

JLS: Synchronized-With Relation

“Synchronized-with” relation
e unlock monitor M ~ all subsequent locks on M
e volatile write = all subsequent volatile reads

Notation: send — receive

JLS: Happens-Before & Data Races

X happens-before Y, when

e X, Y -insame thread, X before Y in program order
e X is synchronized-with Y

e Transitivity: exists Z: hb(X, Z) && hb(Z, Y)

Data race: 2 conflicting accesses, not ordered by
happens-before relation

Happens-Before Example

Thread 1 Thread 2

synchronized (lock) {
account.deposit(5);

} \

happens-before

——— synchronized (lock) {
account.deposit(7):;

}

e No data race

-

Happens-Before Data Race Detection

Track all synchronization events
Store synchronized-with edges between them

At each shared field read R from T2 check if last write W

from T1 happened-before it - i.e. there were events A in
Tland Bin T2:

e B happened-before R

e W happened-before A W—->A->B—->R
e A synchronized-with B

At each shared field write W check if

e last write W ., happened-before W
e Allreads R, Ry, happened-after W,,.,, happened-before W

eeey

Time

Vector Clock

A:0

B:0

C:0

Time

Vector Clock

A:0

B:0

C:0

C:A1

Vector Clock

C:A1

Vector Clock

C:1

Vector Clock

C:A1

Vector Clock

C:A1

Vector Clock

C:0

C:A1

B:3
C:2

Vector Clock

C:0

C:1

B:3

C:2

Vector Clock

C:0

C:1

B:3

C:2

Vector Clock

C:0

C:1

B:3 B:3
C:2 C:3

Vector Clock

Vector Clock

Vector Clock

Ordered!

Before

C:0

C:1

Vector Clock

Not ordered!

A:3>2
B:3<4

C:0

C:1

B:3

C:2

Happens-Before Algorithm

Vector clock for each thread

Vector clock for each synchronization object
Algorithm

e Event A: T, accessed object X at time T,

e Event B: T, accessed object X at time T,

e B occurred after A in program order

e T,.VC[1] at T, 2 T,.VC[1] at T, = 'hb(A,B).

Write and read vector clocks for each shared object

At each access to some shared object:
e check thread clock against object clock
e store thread into object clock

How It Works. No Data Race Example

Thread T, T..VC=[5,10] Thread T, T2.VC=[3,12]

synchronized(lock) {
X=1; //X.VC.load(T,.VC): [5,10]
//Ti.VC.tick(): [6,10]
//lock.VC.load(T,.VC): [6,10]

} \

synchronized(lock) { //lock.vC: [6,10]
//T,.VC.load(lock.vC): [6, 13]
int y = X; //X.vC : [5,10]
//X.VC[1] = 5 < 6 = T,.VC[1]
// => NO data race

How It Works. Data Race Example

Thread T, T1.VC=[5,10] Thread T, T,.VC=[3,12]

synchronized(lock) {
X=1; //X.VC.load(T,.VC): [5,10]
//Ti.NC.tick(): [6,10]
//lock.VC.load(T,.VC): [6,10]

}
//T2.NC: [3, 12]

int y = X; //X.vC : [5,10]
//X.NC[1] =5 > 3 = T,.VC[1]
// => DATA RACE

How We Do It

* So, we store vector clock for each
e shared object/variable
e synchronization object
e thread

» Update corresponding clocks before/after intercepted
operations

* Huge impact, um?
e Not huge-huge-huge: we have config and optimizations

Code Instrumentation

Check everything => huge overhead

Race detection scope
e Accesses to our fields
e Foreign calls (treat them as read or write)

Sync scope

e Detect sync events in our code

e Describe contracts of excluded classes

e Treat these contracts as synchronization events

}

-

Race Detection

private class Storage {

private Map<Integer, Item> items = new HashMap<Integer, Item> ();

public void store(Item item) {
items.put(item.getId(), item);
}

public void saveToDisk() {
for (Item item : items.values()) {

saveItem(item);

}

public Item getItem(int id) {
return items.get(id);

}

public void reload() {
items = deserealizeFromFile();

}

On each access of “items” field we check
race on this field

On each call of “items” method we check
race on this object

Each field of class liem is protected the
same way as field “items” of class
Storage

Synchronization Contract Example

Tl

Contract: <
So.put($k,*) > So.get(Sk)

T2

Synchronization Contract Example

<Multiple-Sync owner="java.util.concurrent.atomic.AtomicLong">
<Multiple-Links>
<Multiple-Link type="owner"/>
</Multiple-Links>
<Call type="receive" name="get" descriptor="()J"/>
<Call type="send" name="set" descriptor="(J)V"/>
<Call type="full" name="getAndSet" descriptor="(J)J"/>
<Call type="full" name="compareAndSet" descriptor="(JJ)z"
shouldReturnTrue="true" />
<Call type="full" name="getAndIncrement" descriptor="()J"/>
<Call type="full" name="getAndDecrement" descriptor="()J"/>
<Call type="full" name="getAndAdd" descriptor="(J)J"/>
<Call type="full" name="incrementAndGet" descriptor="()J"/>
<Call type="full" name="decrementAndGet" descriptor="()J"/>
<Call type="full" name="addAndGet" descriptor="(J)J"/>
</Multiple-Sync>

Synchronization Contract Example

<Sync>
<Links>
<Link send="owner" receive="owner"/>
<Link send="param" send-number="0" receive="param" receive-number="0"/>
</Links>
<Send>
<MethodCall owner="java.util.concurrent.ConcurrentMap" name="put"
descriptor="(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;"/>
</Send>
<Receive>
<MethodCall owner="java.util.concurrent.ConcurrentMap" name="get"
descriptor="(Ljava/lang/Object;)Ljava/lang/Object;"/>
</Receive>

</Sync>

Clocks Storing

Thread clock
e ThreadLocal<VectorClock>

Field XXX
e volatile transient VectorClock XXX vc;

Foreign objects, monitors
e WeakIdentityConcurrentHashMap<Object,VectorClock>

Volatiles, synchronization contracts
e ConcurrentHashMap <???, VectorClock>

Composite Keys

Volatile: owner object + field name

Synchronization contract:

e owner?

e parameters?

e |t’s specified in configuration!

We need composite keys

Generate them on-the-fly

Composite Keys

AtomiclLongFieldUpdater.CAS(Object o, long offset, long v)
e param 0 + param 1

Volatile field “abc” of object o
e object + field name

AtomicInteger.set() & AtomicInteger.get()
e object

ConcurrentMap.put(key, value) & ConcurrentMap.get(key)
e object + param O

-

Composite Keys

Always have instance field of type Object

* make it WeakRef to avoid memory leaks

Different for different cases (contracts)

e parse synchronization config and generate them on-the-fly
e instrument loadClass() method in all ClassLoader-s

Used as keys in ConcurrentHashMap

e calculate & store hashcode immediately after construction
e override hashcode() and equals()

Instances of CompositeKeyXXX are frequently created

e maintain ThreadLocal<ReusableCompositeKeyXXX>

e override equals() to make them comparable to each other

Solved Problems

Composite keys for contracts and volatiles
e Generate them on-the-fly

Avoid unnecessary keys creation
e ThreadLocal<MutableKeyXXX> for each CompositeKeyXXX

Loading of classes, generated on-the-fly
e Instrument ClassLoader.loadClass()

Solved Problems

Composite keys performance
e Calculate hashcode after construction
e Override hashcode() and equals()

Garbage producing
e ThreadLocal<MutableKey> for map keys

Loading of classes, generated on-the-fly
e Instrument ClassLoader.loadClass()

Solved Problems

Don’ t break serialization
e compute serialVersiodUid before instrumentation

Caching components of dead clocks

e when thread dies, its time frames doesn’t grow anymore
e cache frames of dead threads to avoid memory leaks

e |ocal last-known generation & global generation

Class Loading Hell

We generate classes on-the-fly: composite keys, etc.

Bootstrap classloader should know how to load them
e instrument loadClass() method

Other classloaders should know too
e not obliged to delegate to parent classloader
e instrument loadClass() method ©

Synchronization contracts: interfaces

Usually interface contract is described (ConcurrentMap)

Instrumentation stage:

e specified interface might even not been loaded yet

e get “potential contracts” from method name & signature
e code path for each potential contract

Runtime:
e js potential contract real?
e caching: {class, contract_id} - boolean

DRD in Real Life

Run

Improve Check
config Logs

Fix
races

DRD in Real Life: QD

CPU usage: 42,5% GC activity: 0,0% Size: 771358 720 B Used: 278 030 5128
Max: 2 147 483643 B

100%
S0% 4 | P R T[T R R S e e —
80%
600 MB
70% 4 |
500 ME- f d
60% - | \, 6 races foun
50% 400 MB+ |
409% 300 ME 4
30% 1
200 MBE
20%
M -
10% 4 100 MB
0% T T T T o MB T T T T
18:456 18:48 18:50 18:52 18:46 18:48 18:50 18:52
CPU usage:67,0% GC activity:0,0% Size: 834 142 208 B Used: 256 373 536 B
Maxc 2 147 48364938 B
10096
800 MB +
S0%
ms- 7(” MB w—— L
70% + €00 MBE
0% 500 MB
50%%1 400 MB
40%
300 MB ="
30% +
e
200 MB |
20% +
10% - 100 ME

0% T T T T oMBE T T T T
17:08 17:10 17:12 17:14 17:08 17:10 17:12 17:14 /

CPU usage:0,3%

100%

90%

80%

70%

0%

50%

40%

30%

20%

10%

0%

100°%G

S0%

80%

70% +

0%

50%

40%

30%

20%

10%

DRD in Real Life: MARS Ul

GC activity: 0,0%

P — A A R .
17:00 17:05
CPU usage: 1,9% GC activity:0,6%
16:46 16:48 16:50 16:%

Size: 489 8816008
Maxc 2 147 4836498 B

Used: 374 199 456 B

500 ME

400 ME

300 ME

200 MB

v 5 races found

100 MBE

oMB

16:55 17:00 17:05

Size: 1236 795 392B
Max: 2 147 483648 B
1 250 ME

Used: 981046616 B

1 000 ME +

750 MB1 |

500 MB |

250 ME A

0O MB-'— T T T
16:45 16:48 16:50 16:¢

DRD Race Report Example

WRITE_READ data race between current thread Thread-12(id = 33) and thread
Thread-11(id = 32)

Race target : field my/app/DataServicelmpl.stopped

Thread 32 accessed it in my/app/DataServicelmpl.access$400(line : 29)

at my.app.DataServicelmpl.stop(DataServicelmpl.java:155)
at my.app.DataManager.close(DataManager.java:201)

DRD Advantages

Doesn’t break serialization
No memory leaks

Few garbage

No JVM modification

Synchronization contracts
e very important: Unsafe, AbstractQueuedSynchronizer

Perspectives

Verify declared intentions
e “variable X is protected by lock L”

Static analysis
Integrate with tools for multithreaded unit-tests

Annotations

Links

e http://code.devexperts.com/display/DRD/:
documentation, links, etc

* Contact us: drd-support@devexperts.com

» Useful links: see also on product page
e [BM MSDK
e ThreadSanitizer for Java

e iChord
e FindBugs

e JLS «Threads and locks» chapter

